The future of computing:

a conversation with John Hennessy
(Google 1/0 '18)

Boy, I'm delighted to be here today and have a chance to talk to you
about what is one of the biggest challenges we faced in computing in
40 years, but also a tremendous opportunity to rethink how we build
computers and how we move forward. You know, there's been a lot of
discussion about the ending of Moore's law. The first thing to remember
about the ending of Moore's law is something Gordon Moore said to
me. He said, all exponentials come to an end. It's just a question of
when. And that's what's happening with Moore's law.

25 0|0 2fA 40 20| HREOM AHE o 7t 2 =8 F ottt
FARAX|Of L ojor7| & 7|BE HAH EOf 7|mA EZetL . ES
AREHE 755t SHM Yoz Lotz S-S O 443 = + U=
AEH 71 YLt . Fofel @A ZZ0 Cisf H2 =27t AYUSLILE F0{9
A 2o ool 7he BA Z[Ysfor & A2 AE FO{7F LA o RO|C}.
d= 2= X=7F LA =ltin 2o 242 2Rl 2Me EU T
adg|n O42 Fofel gAoAM LojLt= LY LT

10000

Moore’s Law . "
in DRAMs o

»

Megabits per DRAM

/

/ 1.5x/year 1.4x/year 1l.ix/year
/ 2xin<2years 2xin2years 2xin 7 years

1990 1985 1990 1995 2000 2005 000 2018 2020

If we look at-- what does it really mean to say Moore's law is ending?
What does it really mean? Well, look at what's happening in DRAMSs.
That's probably a good place to start because we all depend on the
incredible growth in memory capacity. And if you look at what's
happened in DRAMs, for many years we were achieving increases of
about 50% a year. In other words, going up slightly faster even than
Moore's law. Then we began a period of slowdown. And if you look
what's happened in the last seven years, this technology we were used
to seeing boom, the number of megabits per chip more than doubling
every two years, is now going up at about 10% a year and it's going to
take about seven years to double. Now, DRAMs are a particularly odd
technology because they use deep trench capacitors, so they require
a very particular kind of fabrication technology.

2|7t 4m ZCHH, F0{o #Alo| ZHol2tn Y= A FAS QO LI}?
72 U2 2AS Q0L 7t? 2 M, DRAM oA & 20| LOojLH=X]
BHAR OAd2 227l 2F 22| 8o A™H J&| oESHI| WEo
ofot AJEtE &= Qe £2 XYLICH J2|10 DRAM OfA 2ojt LS A
2O, 3 50 22l 2UE F 50 %2 37HE dHHMESLILCE F, F0{9
HEHCH oF7F O We| Setziche ZAYUCH O3 o 2l EN7IE
AZHSLCH X 79 S Yojit Y2 HEHEH 2 Hoj| &= v Ol F7t%t
e H7F HE == O|A Ofd 2F 10 %% 22t7tn JAELICH F Hi2 7 4.
O|X DRAM 2 E EHIX| HIHAIEHE AHESHY| 20| £3] o4t 7|&0|22
oj< Edst TFC M= 7|=0| EagLct

LE«07

M O O Fe ,S LaW =+=Transistor Density <“~Moore's Law (1975 Version) /-

Slowdown in - e
1LE+0S /

Intel Processors /;“//
1E+04 /’“

Cost per transistor is //

slowing down faster, due g /-/

to fabrication costs.
1E:02 /’/’t/

1E+00 W
1974 1978 1982 1986 1990 1994 1998 2002 2006 2010 2014

What's happening in processors, though? And if you look at the data in
processors, you'll see a similar slowdown. Moore's law is that red line
going up there on a nice logarithmic plot. Notice the blue line. That's
the number of transistors on a typical Intel microprocessor at that date.
It begins diverging, slowly at first. But look what's happened since in
the last 10 years, roughly. The gap has grown. In fact, if you look at
where we are in 2015, 2016, we're more than a factor of 10 off, had we
stayed on that Moore's law curve. Now, the thing to remember is that
there's also a cost factor in here. Fabs are getting a lot more expensive
and the cost of chips is actually not going down as fast. So a result of
that is that the cost per transistor is actually increasing at a worse rate.
So we're beginning to see the effects of that as we think about
architecture. But if the slowdown of Moore's law, which is what you see
all the press about as one thing, the big issue is the end of what we call
Dennard scaling.

JYX[E Z2MAMOAM ofH Yo
2H Hx3t £ Mg = +
T2of 22t7te AL/t oiEtd Mg 2
OlEl OIO|3E ZEAMAQ EH

AZFStLICE d2{Lp X[10 @ SO F2& o] AU
AKIE HARBESLICH AFHZ, 2015 W, 2016 Hof| 22|7
fe2le 1 Fojo HA [Mo| HERCHH 10 22| 10[4E oOjgtL|Ct. OfX|

A

7|sioF & A2 of7(0f HIE @A7t ACts AYJLICE Fabs &= B4 O HMD
A HE8E2 AME WEX= REUCH M2t ZOHe R EWXAH E HE2
HAMEZ O LR £22 SIKELCH M Rl X0 ofsh 2 o 1
g 27| AEASLICE deLt ZE HES o 72 B F0{9 H% 0|
X H 2 EMes 27t QUHEE AALE (Dennard scaling)0|2tl £2&
Ao ZLct

Technology
and Power:
Dennard Scaling

==Technology (hnm) ~=Power/nmA2

per nm*2

Energy scaling for fixed
task is better, since more
& faster xistors.

NANOMETERS

Relative Power

Power consumption base
Esmaeilzadeh [2011]

So Bob Dennard was an IBM employee, he was the guy who invented
the one transistor DRAM. And he made a prediction many years ago
that the energy, the power per square millimeter of silicon would stay
constant, would stay constant because voltage levels would come
down, capacitance would come down. What does that mean? If the
energy, if the power stays constant and the number of transistors
increases exponentially, then the energy per transistor is actually going
down. And in terms of energy consumption, it's cheaper and cheaper
and cheaper to compute. Well, what happened with Dennard scaling?
Well, look at that blue line there. The red line shows you the technology
improving on a standard Moore's law curve. The blue line shows you
what's happening to power. And you all know. | mean, you've seen
microprocessors now, right? They slow their clock down, they turn off
cores, they do all kinds of things, because otherwise they're going to
burn up. They're going to burn up. | mean, | never thought we'd see the
day where a processor would actually slow itself down to prevent itself
overheating, but we're there. And so what happens with Dennard
scaling is it began to slow down starting about '97. And then since 2007,
it's essentially halted. The result is a big change. All of a sudden, energy,
power becomes the key limiter. Not the number of transistors available
to designers, but their power consumption becomes the key limiter.
That requires you to think completely differently about architecture,
about how you design machines. It means inefficiency in the use of
transistors in computing. Inefficiency in how an architecture computes
is penalized much more heavily than it was in this earlier time. And of
course, guess what?

2 Bob Dennard = IBM HRO|JA&L|Ct 1= of EMX|AH DRAM 2
FAFZIOIRASLICE Ol O =4 Mo ofj|Xx|[7}, & L2|0[EQl
MH2 S X2 A0, MY 2Eo| ZOpx|7] W&o FH
SOtA Zolgts oF2 ELICH O F& 0|7 MHO0| LS

1 EWX|AEL 7t 7|5taHoE SIM5HH oHX|= HHE

AHE OHX[E HO{EELICE O2|1 ofHX| AHFHOM = [,

0 MPSH NEHSHA ALk = USLICH Dennard 274 Y2 O{EA

F? %, A7\0f ot M2 EAe. WM M2 mFE F0{o] HA JMOA

HolFL|Ch gt M2 ofd ol dojutn UYEXE EFL Ot
o

nooog
X2 H O rH rot
OE

[m do o mx nE

L]

(I

HL
rMo o ¥ ™ my M g¥ 2 A o
of

[0 X ™ rulo
2 X [
~J
1 o

n o
0 mn
ro 9
o= H
- X 30
T omuu oy
e i
=
past T
o KM
N
H Ao
o
I
In]
bl
mn o
rlo
m
i)
o
e
N
o
=

[H
HU
=
x
N
B
o IR r
m
rir
paL]
mjo
I}
N
Ho
OF
HU
=
x
N
n_|>
>
HU
Ir
i
ﬁ
rir
HJE
njo

al
Ct SA2AX|2, 22l= #7[0 ASLICE MEtA Dennard
A AetL|Ch J2|3 2007 HRE 2EHLE
LICh. Zaks 2 ST ZAH], oju], A0l &y 2|05 7t
WAAE == OfLX|2F M &H|7F Y
ob 2T CHE 44, 7IA 2A
oM EMXAH ALES| Hlm=ES
of tiet HlZ&2 oM=Lt &N

[> mone
1
rir

m

ne
om
oy rjo g2
a0 9
[im
4r
m
>
bal
n
N
>
bal
o

o ofy
a rCcm X
o m
>
o
vl
Ral
N
>
g U oo
mot
4>
¥0
rir
[m
r

ru
I
\,1
[
r
il
o

}.

-— —

CHsh Azto| T QSHL|CH O 2|
'—I'If OHIE—*lXPf Of A ALl =X
olg wh=rt J2|n 22

[0 o

N B8
o <2

0=

Of
é

Energy Efficiency is the New Metric

Battery lifetime determines effectiveness!

LCD is biggest; CPU
close behind.

“Always on” assistants
likely to increase CPU
demand.

All the devices we carry around, all the devices we use are running off
batteries. So all of a sudden, energy is a critical resource, right? What's
the worst thing that happens is your cell phone runs out of power, your
smartphone runs out of power. That's a disaster, right? But think about
all the devices we walk around with. They're hooked up to battery. Think
about the era, the coming era of loT, where we're going to have devices
that are always on and permanently on, which are expected to last 10
years on a single battery by using energy harvesting techniques.
Energy becomes the key resource in making those things work
efficiently. And as we move more and more to always on devices with
things like Google Assistant, you're going to want your device on all the
time or at least you're going to want the CPU on all the time, if not the
screen. So we're going to have to worry more and more about power.
But the surprising thing that many people are surprised by is that
energy efficiency is a giant issue in large cloud configurations.

n

7t CiL= 2= X, 2271 Ar8dte Z& EXl= HIEZ|E ALESHA]
ASLCE M LA 2= oHX|[7F Sk A-YLC 5Lt
= SO Mate|l MAO| B X|AHLE A0tE Z2o M0 BHX|=
YLICE OA xfolof, AFX|? Q2L 2|7t 20 L= 2= FX(0f
W2 EMAR 252 HIHZ[Of HZE0 JAFLICHL X == 7|=S
T HIHEZIZ 109 S XSE A2z OdEl= X7 g4 U
HX|E|= loT 2 AlCHet A|IHE A2 A, oA X|7F
& St= e AFRO0| EL|C} Google Assistant 2t 22
ALESH0 ey TRE AL ALY WOt K& & A 281
Ofl & AlZto] CPUu £ RSHA ELch JdejM R2l=
PAYLCE L B2 MES0| 2k ot=

HME oHX] 2880 & =Xat= AYH

Of

M o> mo 41 oo 2% 4o 1@ K
o 23 2

2

|.|-|

ot

g2 o

Wk oX OF od o 0@ > 2 oY Bt 52 Ho
oz
inl
Ot
=2
i}
el
N © o0
ox
el
o
Tuot
>£

'}
Ho
ox
rlo
flm}
0%t
mlu
'}
Ho
N
1
0x

And In the Cloud

Capital Costs

Shell and Land
® Power = Cooling
® Servers

® Networking Equipment

This shows you what the typical capital cost would be like for a Google
data center. You'll notice that green slice there, those are the servers.
But look at the size of that red slice. That red slice is the cost of the
power plus cooling infrastructure. Spending as much on power and
cooling as you're spending on processors. So energy efficiency
becomes a really critical issue as we go forward. And the end of
Dennard scaling has meant that there's no more free lunch. For a lot of
years, we had a free lunch. It was pretty easy to figure out how to make
computation more energy efficient. Now, it's a lot harder. And you can
see the impact of this.

0|42 Google HIOIE AlE{0| CHst YBHAQl X2 H|&S E0FL|Ct 717|01|
=AM EZH0| AZE LA E AL OAES MHYLC J8L O &

ZZto] 37|18 EMA|Q. O] W7t Xz M3 9l A2t olmat HIR%II-IEL
Z2 M MO AH|SHE M3 5 d2t20| B2 =2 XEFLLUCh w2k o X|
82 227t TE & M U2 FQ3 X7t ELct 2|2 Dennard
2L B2 ARER 0| O oy gitks A2 oOjgLch & & S¢t
22l 78 o AME HSUCHL AME 2O UK E8XC2 DtEEs
HHS YOotL= A2 o #HSLICHL O[X &M O ofz{{/ESLICE dgln
A2 o|AHe FyE = = USLCH

40 years of Processor Performance
End of Growth of
Single Program
Speed?

End of

VAX11-780

Dennard
Scaling
=

Multicere
2X/3.5yrs

Cisc (23%/yr)
2X/3.5yrs
(22%/yr)

Performance vs

Based on SPECintCPU. Source: John
Hennessy and David Pattersen, Computer
Architecture: A Quantitative Approach, 6/e
2018

This just shows you 40 years of processor performance, what's
happened to uniprocessor, single processor performance, and then
multiprocessor performance. So there were the early years of
computing, the beginning of the microprocessor era. We were seeing
about 22% improvement per year. The creation of risk in the mid-1980s,
a dramatic use of instruction level parallelism, pipelining, multiple issue.
We saw this incredible period of about 20 years, where we got roughly
50% performance improvement per year. 50%. That was amazing.
Then the beginning of the end of Dennard scaling. That caused
everybody to move to multi-core. What did multi-core do? Multi-core
shoved the efficiency problem from the hardware designer to the
software people. Now, the software people had to figure out how to use
those multi-core processors efficiently. But Amdahl's law came along,
reared its ugly head. I'll show you some data on that. And now, we're in
this late stage period where it looks like we're getting about 3%
performance improvement per year. Doubling could take 20 years.
That's the end of general purpose processor performance as we know
it, as we're used to for so many years.

40 3 Setel Z2MAM g5, BHY ZEAAM, BHEY Z2HM 495 OF
Z2MAM g0 ofd Belrt AJA=XE 2OFHE DM =7] 00|32

A E AltH, oto|32 Z= MM AltHel Ao RAASLIEL 2= A of

22%2| s HRUASLCH 1980 A SO Y 247t EEJ=H, Ol
Yol == EZ AN2|, mo|Z 2told, ttE =M el SHQ AHE0IAS LIt

f2l= o] Z2t2 7|Zt2 2 203 St EUSFLICEL 07| 22l Szt o
50%2| H& TMS EUSLICE 50% =EHESLICH CHS Dennard 2A 239 &
22 0|2 Qg ZE AEES0| HE| R0E o|asELCE HE 2o BAS
Sty HE| 20 SEQO CIXIO|H0IM A~ZEQIO] ALEXIO| O|2&
2ed EME SHZ}SLICE O|N AZEQIOf AAEAt=s HE| A0 ZEMME

20 =2 ZE L oA

=

=

F 40| H

o
[

ZLICH. 28t Amdahl 2 #=xlo| et

H

A

.
o
A

Ofof
SLICE 2240 Cf

| -

2| =
Ag L. oSzt

o
T

olo
gl
(K,
o3

1
ol

20 0] 2 & YgLITL olz0] 227t

=
—

ZMM g2 YL 28 A

iz

o The End of

0% Instruction Level
§ Parallelism:
i : | Wasted Work on
! I I I the Intel Core i7
II' . . -III il
«,"‘c & vo*‘;: s f,\?\&“q(& S0 * g & & “";\-

& e
g &

9%

&

Data collected by Professor Lu Peng
nd student Ying Zhang at LSU

Why did this happen? Why did it grind to a halt so fast? Well, think
about what was happening during that risk era where we're building
these deeply pipelined machines. 15, 16, 17 stages deep pipelines,
four issues per clock. That machine needs to have 60 instructions that
it's working on at once. 60 instructions. How does it possibly get 60
instructions? It uses speculation. It guesses about branches, it yanks
instructions and tries to execute them. But guess what happens?
Nobody can predict branches perfectly. Every time you predict a branch
incorrectly, you have to undo all the work associated with that missed
prediction. You've got to back it out, you've got to restore the state of
the machine. And if you look inside a typical Intel Core i7 today, on
integer code roughly 25% of the instructions that get executed end up
being thrown away. Guess what? The energy still got burnt to execute
all those instructions. And then, | threw the results away and | had to
restore the state of the machine. A lot of wasted energy. That's why the
single processor performance curve ended, basically.

9ff O] O] Yol HELi7te ef A el HEF=7F 2M|, 27t THoj=
2Helo] 22 J|AE BEE st AlTjo] P& Yo Lof WEX| M2
HHAIR.15 16, 17 EHA © mto|= 2t 25 & 4712 0|5, 1 7|A =
J7240] 2ot= 60 7HAl XAl At ZFR| D RLO{OFgtLIEt 60 K. @A 60
TR RIAIAS S S 2= Q&Lb OZHe =2 AT L O7ie X|™o|
Ch 2Lt oA EX| H2sy

Lk 2718 22 058

o 30
it
ru|0-.<2

E
=(l)=|-
4%
A
Kel;
k1
Ral
>
>
oot
mjo
o
ol
N
>
0%
IIOJ

EHA|R, OfRE X
mjotct F2HE o=t
AL |&totof shuC
M& ol olel A 7
25%7t H{eiX| A ELCh HHE ZE XA Algte ST Qs Y|
O X7t ARE|RAELICE J2|0 LA ZOtE H2ln AFHO MEE

oz

r_I:J_ ﬂ.||0

e rlo

i g
Of
)
=2
A%
ot
+
Ir
£Q

ol
rx

rIJIO
ru:
* B
|'|I I
r2
oz
+
kU
[
=2
x
n>
0%
m
ol=}
O_I.I.
<
e}
i}
n

IC. &2 oA H|. 0[Z{0]
b Ol 7 LE

Speedup versus % "Serial” Processing Time

Amdahl’s
Law Limits
Multi-core Gains

Speed-up

Processor Count

But we see similar challenges when you begin to look at multi-core
things. Amdahl's law, Gene Amdahl wrote Amdahl's law more than 40
years ago. It's still true today. Even if you take large data centers with
heavily parallel workloads, it's very hard to write a big complicated
piece of software and not have small sections of it be sequential,
whether it's synchronization or coordination or something else. So think
about what happens. You've got a 64 processor multi-core in the future.
Suppose 1%, just 1% of the code is sequential. Then that 64 processor
multi-core only runs at the speed of a 40 processor core. But guess
what? You paid all the energy for a 64 processor core executing all the
time and you only got 40 processors out of that, slightly more than half.
That's the problem. We've got to breakthrough this efficiency barrier.
We've got to rethink how we design machines.

gLt 2|7t HE| ool ASS 27| AIAE O Hxst 27t LAeL|Ct

Amdahl 2] #%! Gene Amdahl 2 Amdahl 2 #%lS 40 4 Hof Zdg&L|ct

REL OS] AMMULICH MSHA HE A 257 e oY HojE MHE

b7t et S8 AZEQIOE APt S7|=tLt 2 E= 7|EF CHE

S FASIX| o A2 2ES =XAFCE MEtte A2 0@ ofFSL

JEjM B& o] 2oy K| M2 A2, DA O/210] 64 Z2AMA HE|
% b 1%2F1 7P§;6+E1 iEEI 1%2t =Xt "—IEr ad

AN = = o=
=ZHo[Lt. f2[= ol2et 2&d ’é*b—'i‘% Qﬂ’ﬁoi :ESHOF gL *2l=
7IAE EASHs L™ CHo CHAl dZtsioF gLt

What's Left?

SW-Centric

e Modern scripting languages are interpreted, dynamically-typed
and encourage reuse
e Efficient for programmers; not for execution

HW-Centric

e Only path is Domain Specific Architectures
e Just do a few tasks, but extremely well

H0L0

So what's left? Well, software-centric approaches. Can we make our
systems more efficient? It's great that we have these modern scripting
languages, they're interpreted, dynamically-typed, they encourage
reuse. They've really liberated programmers to get a lot more code
written and create incredible functionality. They're efficient for
programmers. They're very inefficient for execution, and I'll show you
that in a second. And then there are hardware-centric approaches,
what Dave Patterson and | call domain-specific architectures. Namely,
designing an architecture which isn't fully general purpose, but which
does a set of domains, a set of applications really well, much more
efficiently.

O @32 d Jopy 8, AZEQI0 34 F2H. AAHE 2O 28%C=
oS &= AU f27t o|2fet x[AM A3 Y AOE ZHX|2 U1, SiM &[T,
SHo =2 EtYetkly, THALE S HEFSH= A2 Ot YYLCh 152
ZEO00|A B2 AEE Aot 52t 712 BE = U sHFEEUT
JAAE2 Z22i00lA 22X YL ch ™o e HzeXeeld, FAl 2o
20 E2|Z&LCh 2|1 Dave Patterson It Li7F =0 QI £ o7 |E Azt
2= SR Sl 2 YAol A&LICH F, 25| LEH FH2
OfL|X|ZH L&o| =OfQlS O|F= OF7|HNE HAISt= AYLICE ofE2|# 0]
MEEs ¥ ZS8XYLICH

What's the Opportunity?

Matrix Multiply: relative speedup to a Python version (18 core Intel)

Version Speed-up Optimization
Python 1
C 47 Translate to static,
compiled language
C with parallel loops 366 Extract parallelism
C with loops & 6,727 Organize parallelism
memory optimization and memory access
Intel AVX instructions 62,806 Use domain-specific
HW

from: Leiserson, et. al. “There's
Plenty of Room at the Top.”

So let's take a look at what the opportunity is. This is a chart that comes
out of a paper by Charles Leiserson and a group of colleagues at MIT,
called "There's Plenty of Room at the Top." They take a very simple
example, admittedly, matrix multiply. They write it in Python. They run
it on an 18 core Intel processor. And then they proceed to optimize it.
First, rewrite it in C. That speeds it up 47 times. Now, any compiler in
the world that can get a speed up of 47 would be really remarkable,
even a speed up of 20. Then they rewrite it with parallel loops. They
get almost a factor of nine out of that. Then they rewrite it by doing
memory optimization. That gives them a factor of 20. They block the
matrix, they allocate it to the caches properly. That gives them a factor
of 20. And then finally, they rewrite it using Intel AVX instructions, using
the vector instructions in the Intel Core, right, domain-specific
instructions that do vector operations efficiently. That gives them
another factor of 10. The end result is that final version runs 62,000
times faster than the initial version. Now admittedly, matrix multiply is
an easy case, small piece of code. But it shows the potential of
rethinking how we write this software and making it better.

Jde2iM 7|27t FAQIX| A EZEL|CE 0|42 Charles Leiserson 1t MIT 2|
st 19| HAR0| LESDH "The Top of Room"0| Lt ZEQLICH O52
OfF Ztttst o & &1 JUFLLCHE OS2 mojMez 1A FULCH 152 18
AY Intel ZEMAMOIA MATILICH O CHS X3S TIEELICH HY C2
ChAl ZEStUAIR. 47 B (=70 " ZLICEH X 47 2] £28 S

MAON 2= ZAodes Y S22 AYLCH AX[0f £ 202

ds2 g8 RFZ2 OA JggL oy dA4S2 A2l 9H

N
(=2
o[
o | lo
Lo b
mlruFrE"‘"” HoH oo
r
I_Irlr
o

bt
R
ikl
|o
Hu
1z
m
12
2
njo
ot
o
ikl
[0 -
Hu
4
0
Ok
rr
=]
o
kL
k=)
1o
1z
m
(ol
o
<

olJ
Kr

70

ok

| =

M0

LIC} O|X|= & =

=
=

HH2 £7| HMECE 62,000 HY b

Domain Specific Architectures

(DSAs)
Achieve higher efficiency Examples
by tailoring architecture e Neural network processors

for machine learning

to CharaCterIStICS Of domain e GPUs for graphics and virtual reality

o Not one application, but a domain of
applications
o Different from strict ASIC

e Requires more domain-specific knowledge
than general purpose processors need

0.0

So what about these domain-specific architectures? Really what we're
going to try to do is make a breakthrough in how efficient we build the
hardware. And by domain-specific, we're referring to a class of
processors which do a range of applications. They're not like, for
example, the modem inside the cell phone, right? That's programmed
once, it runs modem code. It never does anything else. But think of a
set of processors which do a range of applications that are related to a
particular application domain. They're programmable, they're useful in
that domain, they take advantage of specific knowledge about that
domain when they run, so they can run much more efficiently. Obvious
examples, doing things for neural network processors, doing things that
focus on machine learning. One example. GPUs are another example
of this kind of thinking, right? They're programmable in the context of
doing graphics processing.

W

PO
HU m© rjo o
-
n
]
i
k1
H
=
ro
=2
a
m
_|
i
rir
fiml
0Q
s
2
M|k
o

I=!

MM 222 egst
|

In
=
my
Rl
62
o>
r
N
BN

o)

ED =

Z3 Ch2 %2 ofXl YBULh 13U SF 28 Z21Y =0lm A
U2io] 88 EEIUS Maloks TEAN T2 Y| HaAL.
Z2Yo| Jhsetn ST EOQIA RO MY Al T =olel) oy
S XA2 Y8GDE N BEHOR MW 4 YBLCH U o,
NFY ZRANMO ChE XY, V17 S0l WS Wi e, 3 A o
GPU £ O[3 FRo| M2to| ® T2 O YLich LT 12T Halet

e
ry
ok
2
I=
Hu
[
!
og
o
N
or
o
-
o

Why DSAs Can Win (no magic)

Tailor the Architecture to the domain

More effective parallelism for a domain:
e SIMD vs. MIMD
e VLIW vs. Speculative, out-of-order

More effective use of memory bandwidth
e User Controlled versus caches

Eliminate unneeded accuracy
e |EEE replaced by lower precision FP
e 32-bit, 64-bit integers to 8-16 bits

H0L0

So for any of you who have ever seen that any of the books that Dave
Patterson and | wrote, you know that we like quantitative approaches
to understand things and we like to analyze why things work. So the
key about domain-specific architectures is there is no black magic here.
Going to a more limited range of architectures doesn't automatically
make things faster. We have to make specific architectural changes
that win. And there are three big ones. The first is we make more
effective use of parallelism. We go from a multiple instruction, multiple
data world that you'd see on a multi-core today to a single instruction
multiple data. So instead of having each one of my cores fetch separate
instruction streams, have to have separate caches, I've got one set of
instructions and they're going to a whole set of functional units. It's
much more efficient. What do | give up? | give up some flexibility when
| do that. | absolutely give up flexibility. But the efficiency gain is
dramatic. | go from speculative out-of-order machines, what a typical
high-end processor from ARM or Intel looks like today, to something
that's more like a VLIW, that uses a set of operations where the
compiler has decided that a set of operations can occur in parallel. So
| shift work from runtime to compile time. Again, it's less flexible. But for
applications when it works, it's much more efficient. | move away from
caches. So caches are one of the great inventions of computer science,
one of the truly great inventions. The problem is when there is low
spatial and low temporal locality, caches not only don't work, they
actually slow programs down. They slow them down. So we move away
from that to user control local memories. What's the trade-off? Now,
somebody has to figure out how to map their application into a user
controlled memory structure. Cache does it automatically for you, it's
very general purpose. But for certain applications, | can do a lot better
by mapping those things myself. And then finally, | focus on only the
amount of accuracy | need. I've move from IEEE to the lower precision
floating point or from 32 and 64-bit integers to 8-bit and 16-bit integers.
If that's all the accuracy | need, | can do eight integer operations, eight

8-bit operations in the same amount of time that | can do one 64-bit
operation.

rt2tA Dave Patterson If |7} £
olsfist?| sl ¥X MZHS MZICHE AX
M= A2 20 JESLICEH WMt =0
Op=0| QICHE AYLICH & O Hghel #el9| 0f7|"3'x‘|§ tHete Xpse 2
A E
%

AQI0| WELK|X|E UELICH Sals SXe AXH HS2 0|20{of HLct
a2ln M JHR 2 HE0| YL R HmE W H2l2 2o snsoz
AFBBICHE HYLICH SBle @5 COHF 0[N 2 £ s OF Yo,

CtE OlO[H 2tB0|A B BFol Lt bo Mgkt O matA 2
E 9 HA

7t QL0{0F 5HH
I

>]
n
=2
x
E.“_
ri5
I
N
ne
m
10
bal
18]

Ef '—f" 7HA|01|A1 H*Oi._FE.
StLOIH Zgez ftist EFE &
HAIZE XHE0| ® FHAIZF 2SO
Of =8 X[= ZFYLILh 52
ARS AFEAF Mol 22 M22lz2 FUUCH 25E2
7t Aol S8 Z2IYS AMEA Mo o
= NOOF YLCE FHAI7L A2 2 stz O LN ol

=
2Lt £F 28 Z2IYo| S ol AES HY KTl
o

oh oﬂ o

ol _I?.'_
X o
12 oy =

\J
-

r

e

mjo

Mz

r2

< o

T o 1r =

> v

qr >

M =
-\.’- b T

[E

Hu

o

e O [0 x
-

- oar
nn

—

x|
= %‘ T Nlﬁl—lﬁh ILEII'- Lt DL Xt 2ot 2o
H

ke

rot
in}
_>¢
ITI
m
m
g
>
ox
9
II
I
k>
%>
b
lo
fu
I'H
rr
w
)]
M|

o 4> o = 1d oH @
b4
i)
-

= o od o ¢ Jo 2 4o

"”° r: S
4% mo ofn ¢

23, L StLte| 64 HIE
87iel 8 HIE ¢t

oF
= 4
mot og

1o

i
P
re
>

Domain Specific Languages

DSAs require targeting of high level
operations to the architecture

e Hard to start with C or Python-like language and recover structure
e Need matrix, vector, or sparse matrix operations
e Domain Specific Languages specify operations:

o OpenGL, TensorFlow

e |f DSL programs retain architecture-independence, interesting
compiler challenges will exist

#1010

So considerably faster. But to go along with that, | also need a domain-
specific language. | need a language that will match up to that hardware
configuration. We're not going to be able to take code written in Python
or C, for example, and extract the kind of information we need to map
to a domain-specific architecture. We've got to rethink how we program
these machines. And that's going to be high-level operations. It's going
to be vector-vector multiply or a vector-matrix multiply or a sparse
matrix organization, so that | get that high-level information that | need
and | can compile it down into the architecture. The key in doing these
domain-specific languages will be to retain enough machine
independence that | don't have to recode things, that a compiler can
come along, take a domain-specific language, map it to maybe one
architecture that's running in the cloud, maybe another architecture
that's running on my smartphone. That's going to be the challenge.
Ideas like TensorFlow and OpenGL are a step in this direction, but it's
really a new space. We're just beginning to understand it and
understand how to design in this space.

Of @ "etRSLICh deiLh b 2 7t7] <8, Ls ot =0 S8 207t
25t} oiE St=fo] gt eX|ot= 07t BT oE =9
Python O|Lt C 2 ZdEl ZEE 7IME + §lel §3 =0 Of7| 84X o
ojZst= o 2ost 328 = & + UASHCLL R2= 0 7IA=S ofEA
T2 & AKX CiAl dZsjorgL|tt. 22|11 AA2 =2 &2 230|
2 AYUCH #HH HWE S == Y A8 o4 E= 32 g8 #9022
2% 1g §2EE 21 o789z Ao & + AsLICh ol2et =il
£ 20E sdst= O A0 HY2 Wt =2dS Ol 2E & Rt Bls
seot 714 SEEE RASteE A, ot =0l §8 QoS AHESHO
0| HHAIZ == U= otLtol oF7[EH A0 ohE & + UACh= AYLIC

2R E, W A0IE Z0M 2dFQ CHE O7[EN & £ ASLCh IA2

=l ZAYUL|C} TensorFlow % OpenGL It Z2 OFO|C|0{& O] ¥gko| ot
Ao ANZEE MER SZHYLICE R2[& O/X dZE2 olsista O]

X
Ol M OfEA CIxtel 2 QAKX Oi5t7| AlZF& L Ct

1 AAH

25,000 20

20,000

Deep Learning
Causing a Revolution

15,000

ML Arxiv Papers

10,000

5,000

Relative Number of ML Arxiv Papers to 2009

You know, | built my first computer almost 50 years ago, believe it or
not. I've seen a lot of revolutions in this incredible IT industry since then-
-the creation of the internet, the creation of the World Wide Web, the
magic of the microprocessor, smartphones, personal computers. But
the one | think that is really going to change our lives is the
breakthrough in machine learning and artificial intelligence. This is a
technology which people have worked on for 50 years. And finally,
finally, we made the breakthrough. And the basis of that breakthrough?
We needed about a million times more computational power than we
thought we needed to make the technology work. But we finally got to
the point where we could apply that kind of computer power. And the
one thing-- this is some data that Jeff Dean and David Patterson and
Cliff Young collected-- that shows there's one thing growing just as fast
as Moore's law-- the number of papers being published in machine
learning. It is a revolution. It's going to change our world. And I'm sure
some of you saw the Duplex demo the other day. | mean, in the domain
of making appointments, it passes the Turing test in that domain, which
is an extraordinary breakthrough. It doesn't pass it in the general terms,
but it passes it in a limited domain. And that's really an indication of
what's coming. So how do you think about building a domain-specific
architecture to do deep neural networks?

L= 7ol 50 & Ho| 32z ARHE USAD, AL
ClEfule] &&, EE 9f0|E Eeo| Ex, Oi0[3= Z2AMA,

AmEe Opga 22, 0 =et2 1T HH0A
o

r>
[u}

O SiHo
e Hys

n>
>
HU
o
L]
B
i
rE
fot
>
Y
pat)
(@]
)
k1
=
Ot
rir

-

I'O >}|_ OF.
rlo
N
]
o
>
k1

- I
ro
O
>
Ir
10

(On]

(@]
LU

oh o

0o N

O

St

2

0%

0

>

|

rir

inl

Mk

fo

rot
Ll
i 32
o oy M
-
L o
e

= b
-—
=

m

A0
o
e —
ot

—
S EEES

tO

MSLICH gLt oL ?2l= O FF79 HAFH 8452 o
E| S LICH st 7HX|= - Jeff Dean 1t David Patterson & Cliff
b OO|H YLICt O]&= O A1 OFEIIIX| 2 W2 A ’8’80
LICE Z|H =50 71|*|EIE =20 +=YLICt Yot AAd=2 2|2

st
5|

AlZ ZAYLCt €0F ™ Duplex HE2E 24 & A2 AYUC A
01
o

A X

rok

= - 4> 2 e
> M A
mo ¢
(o] -
| o>
ot
ot -<
rnr o ofo
3
(o]

" 4=
- A rE
o o

o

25N

 r
s
=

o 37|IH EJ_LI.__I_LOIL“:I. ol H} x—|o|_| 202 A

[|

B2 » g
N> % 1o rlo o
o
-
il
I
i
il

=]
u
iz
>t
ujru
=
iA
)
y rg
M g
Mot
pasd
ro
-

TPU: A Neural

Network Unified Buffer Matrix Multiply Unit
for Local Activations (256x256x8b=64K MAC)
Inference (96KX256x8b = 24 MiB) 24%

Accelerator 29% of chip

Host Accumulators
Interf. 2% (4Kx256x32b = 4 MiB) 6%

- 4
Activation Pipeline 6% |~ |
PCle B -

o ‘ Interface 3% | & i | Misc. 0 1% | U

|§§§=>mc

Well, this is a picture of what's inside a tensor processing unit. The point
| want to make about this is if you look at this what uses up the silicon
area, notice that it's not used for a lot of control, it's not used for a lot of
caching. It's used to do things that are directly relevant to the
computation. So this processor can do 256 by 256--that is 64,000
multiply accumulates, 8-bit multiply accumulates every single clock.
Every single clock. So it can really crunch through, for inference things,
enormous amounts of computational capability. You're not going to run
general purpose C code on this. You're going to run something that's a
neural network inference problem.

=, O|A2 HAM HM2[X[L2 e Aol J-YLICE W7h o] 0] 2tsiA
X H5taxt o= H2 HE|l2 S92 A8ots As EUE M B2 MO E
A ALEE[X| HeChs AS @OF A2 B2 L0 MEEX| Be=lie

X

= = = O AtE&ELct
56 x 256 2 Y = JYFLICL F, 64,000 &40

CE2E B AAL kM

22 9o ¥H 2ol theh Wg c BES
MWK %S HYLITH FAS NFYY £E XS Yo AL

@ GPU/CPU B TPU/CPU TPU/GPU
100 Performance/

Watt TPU vs. CPU
& GPU (Inference)

75

50

25 29
21 16 29
0 | —

Total Incremental
Performance/Watt Performance/Watt
(including host CPU) (no host CPU)

Performance/Watt vs. CPU or GPU

And if you look at the performance and you look at-- here we've shown
performance per watt. Again, energy being the key limitation. Whether
it's for your cell phone and you're doing some kind of machine learning
on your cell phone or it's in the cloud, energy is the key limitation. So
what we plotted here is the performance per watt. And you see that the
first generation tensor processing unit gets roughly more than 30 times
the performance per watt compared to a general purpose processor. It
even does considerably better than a GPU, largely by switching from
floating point to lower density integer, which is much faster. So again,
this notion of tailoring the architecture to the specific domain becomes
really crucial.

HEHAS HdEHEDH 07 Al &

of 4RI 7} =t C = & X*SPE 5.%3_* 232

7IAE MEotE 2EtRE0 UE JEE0] HXIZF Ay SHARLICE aiM

ol7|of 22|17t A=Y A2 AET d ICk ek 1 MK B Z2AMd

FR2 HE ZZAM MO B3l 2%AE | CHEF 308§ OO ELIC

GPU £Ct W O FOJHLIC 28 2FHOM HBE = Hest= A0
=

24 O WELICE CHAl 23l OF7|3ME 538 =0 = 7ol 22
Sag

ot
=
Rl
ot
oo
o
|n

-
°
o r

A New Era:

Everything Old is New Again

o Need design teams who understand: application->language - architecture
e Enormous demand and enormous opportunity.
> Inference and training both have huge computing demands
New DSLs and accompanying compiler technologies
New architectures
o More processors tailored to specific needs: improved design tools
e Maybe we’'ll even have time to work on security!

H0.0

So this is a new era. In some sense, it's a return to the past. In the early
days of computing, as computers were just being developed, we often
had teams of people working together. We had people who were early
applications experts working with people who were doing the beginning
of the software environment-- building the first compilers and the first
software environment-- and people doing the architecture. And they're
working as a vertical team. That kind of integration, where we get a
design team that understands how to go from application to
representation in some domain-specific language to architecture and
can think about how to rebuild machines in new ways to get this, it's an
enormous opportunity and it's a new kind of challenge for the industry
to go forward. But | think there are enough interesting application
domains like this where we can get incredible performance advantages
by tailoring our machines in a new way. And | think if we can do that,
maybe it will free up some time to worry about another small problem,
namely cybersecurity and whether or not the hardware designers can
finally help the software designers to improve the security of our system.
And that would be a great problem to focus on. Thank you for your
attention and I'm happy to answer any questions you might have.
Thanks.

JefM O|Hd2 MZ=2 AHYLCh O BHOM= A2 =02 AYLIC
A =7I0= AFEZE HEEo wat "3ES0l 2 HYsts 327t
RASLICE R HW Fotie X Bl 2ZEL O 2dS #50t=
SZEQ0 2o AIFD OF7|HNE Aot AFE =1t Yotes =7

oiZ2/A 0l =7t AFES0| AYSLILE 21 O52 =% 522
2ot AU o2 TR g2 &Y =OQ 00M o7z &
Z2OHS #olols YEES O3lol 0| M2 422 O Hdsts
YRS 44 =+ A= oA ol s oM EH ZI=0jo YA

f

gl

(o]
i}

= QUCHH, AMO|H &
Q01 CIXtOIAZF DL 22| Al

Z Lotz Mz: FFe =48 a4 2

to

o
I

ojn

o
Pl

L]

E'IIO|
=

A

A~OE

f0f CIXto[LA 7t

=3

P

.
o

Hoil tHsil Z|7H0] B ol

b

—

e
()

ICt. 2aS 7tH FAAM ZAF E2|0 =5

ol

.{

A

7.

Q&A

AUDIENCE: Can you talk about some of the advances in quantum and
neuromorphic computing?

Fal
(=]

SN 2

Mt

2o TEO| CHal O[0k7| 3l FAIZESLIT?

3l

JOHN HENNESSY: Yeah. So quantum-- that's a really good question.
So my view of this is that we've got to build a bridge from where we are
today to post-silicon. The possibilities for post-silicon, there are a
couple. | mean there's organic, there's quantum, there's carbon
nanofiber, there's a few different possibilities out there. | characterize
them as technology of the future. The reason is the people working on
them are still physicists. They're not computer scientists yet or electrical
engineers, they're physicists. So they're still in the lab. On the other
hand, quantum, if it works, the computational power from a reasonably
modest sized qubit, let's say 128 corrected qubits, 128 corrected qubits,
meaning they're accurate, that might take you 1,000 qubits to get to
that level of accuracy. But the computational power for things that make
sense, protein folding, cryptography, of 128-bit qubit is phenomenal. So
we could get an enormous jump forward there. We need something
post-silicon. We need something post-silicon. We've got maybe, as
Moore's law slows down, maybe another decade or so before it comes
to a real halt. And we've got to get an alternative technology out there,
because | think there's lots of creative software to be written that wants
to run on faster machines.

Y. JefM FAs 2 T2 ZE UL dafM W d42 22(7F Ao

XM ZAE HE|ENX| Cr2|E SO00F otCh= A Y

ted2 R ZHX JAELILE |R7IM7F A4, FR2F AL, B U 4774
710 R 7HK] 7tsg0] AL e dASS 0l2iel 7[s2 M

FotCh () S0 SASHE AFEE2 OtAl = Z2[FA0|Ch OS2 Of"'

StAt7F ofH 7| 7[&Ate OfHM ZZ2|sHAILICE 2 a5

Ct. CHE otHE AX}7F RS otCiH slg|dMo 2 Hetsk 37|9| _ﬁt

EAFE, 128 712 =F &l 7 HIE, 128 742 =F& 7 HEZ}

tE, 1,000 7he] 7 HIEZ} = =

=1

dL|Ct ZAE Mz|Z29|

)
|0
tot
0

n> I

égoh
r

> %9 |

P11 1S
mo Mo

of
=

OF Of
3
=2

H‘|
ui 0
91'

of
=

M

Il
o
l_
I
—_—
N
(0]
o
kt F

N

\

E 3| HEO| CHMZE HM3sl of

—_— — [| [==}

mn oy ot |m o dE ox
2 E 1o
rir
b 4
Ir

QT
mjo

J
Mo
Oﬁ

2 4
OlF& LIt daiM f2[= 1
de|Z0| EaUch ZAE H2|E
of TI'EE[7] Hof ofMH =

o ™ o
s

1
H‘|

e 4
ue oz mjo

Hl or
|>
[m
-
Inl

4o mot »N 0 o T px oY Jm ¥

]
rir
Q
O
|.n
4o
k=
1o
rE
1t
o
rl
S o
i
o

Would you mind elaborating on that?
I3

AUDIENCE: | just-- at the end of your presentation, you briefly
mentioned how we could start using hardware to increase security.
ZZ| o
=X

| B2 0 2org

=
Ao 22

torot7| ?lol SH=QOE OEA A
T O XMS] Az FAl

=
JOHN HENNESSY: Sure. Sure. OK, so here's my view with security.
Everybody knows about Meltdown and Spectre? First thing about
Meltdown and Spectre is to understand what happened is an attack
that basically undermined architecture in a way that we never
anticipated. | worked on out-of-order machines in the mid-1990s. That's
how long that bug has been in those machines, since the 1990s. And
we didn't even realize it. We didn't even realize it. And the reason is
that basically what happens is our definition of architecture was there
is an instruction set. Programs run. | don't tell you how fast they run, all
| tell you is what the right answer is. Side channel attacks that use
performance to leak information basically go around our definition of
architecture. So we need to rethink about architecture. You know, in the
1960s and 1970s, there was a lot of thought about how to do a better
job of protection. Rings and domains and capabilities. They all got
dropped. And they got dropped because two things. First of all, we
became convinced that people were going to verify their software and
it was always going to be perfect. Well, the problem is that the amount
of software we write is far bigger than the amount of software we ever
verify, so that's not going to help. | think it's time for architects to begin
to think about how can they help software people build systems which
are more secure? What's the right architecture support to make more
secure systems? How do we build those? How do we make sure they
get used effectively? And how do we together-- architects and software

people working together-- create a more secure environment? And |
think it's going to mean thinking back about some of those old ideas
and bringing them back in some cases.

ok

2
0 2 nz
rot
b

4n

o
U

2ot EO0F, Eotof oot Lto| A7t QAT HE CHRIb AHEO
21 AEL7E? Meltdown and Spectre O & HR 22 227t 23
O &StA| R HAOZ OfF[HIME ZEHOE &¢A|7[& 340| FAQIX]|
Olsfiote AQYLICE L= 1990 O S0 =EY 7[AE ALEUCE
Olgi2 1 Z[Aof Haj7t Lot 22 AJUS

199
Uzt g3 Qel= 1

MEX = ZREHH fel= AAS WEXE ZRASLILCH
Zl2dez Op7[EXel Folols BEH MEZH /bts AYLIC
AELICH L= 230 EotLt &2 Zel= A e
= CHEOl FAQIX| 2o =Lt S2& +20t7
7

AOIE ME &4

Al
=
2
25

el
=
kl
ot
k!
fo
N
;O

L
LIt OFAICFA[L], 1960 HEH 2t
FRleb =0Ql 8 7. Os

r

o
\l
o
i
=
=
n
I
Mo
HT
fot
oz
rE
mjo

= oz

MO N

= 3o

s o>

o L

1E ey LI

11—

-

In]

_|

X

o

M yo

rir

Pl

ou

mn

o

1o
F>
[El
[m
(e}
<
i
oY
ofd

_gl-
pa
=)
ot
>
re

[
Mo Hy
N
N
b
I=!
m
9
I=)
>
o
jn
o
k=]
(1/in}
)
inl
o oo
>
rot
>
>
oo
/o
4
o
met go
I
o o
0 mun £ 3o
m < T in
i d
=)

ot

O

ot

-

3

[

L)

kl

o -

=

2%l

a0

Of

rr

™

4 <

N

o
o B H

k1
C
F|'F
o

OfEH =rC} otEe &tge =gt 1L
F

= |
— =
OtOIC|O{0f CHo dZsh=En o ZR0= =E0t 2E AS 2o

!
)
u
kb

AUDIENCE: After | took my processor architecture class, which used
your book—

TIote] MY S ALEE Z2AMAM OF7|HN SAE AES =,

JOHN HENNESSY: | hope it didn't hurt you.

LHe J70] ZAIS ohxIxl Yos EC

—

AUDIENCE: Hopefully not. | had a real appreciation for the simplicity
of a risk system. It seems like we've gone towards more complexity
with domain-specific languages and things. Is that just because of
performance or has your philosophy changed? What do you think?

Hi2t7| & BRELICH Lhs flg Al2"el thedhof sl S22 ZARMCH =0l
| =

g 210f 8L A= ofet S&E0| S7ret ANMY =HYLCh aAd2 TA gt
M= L7 OtL| B ZEsto] B ASLIT? {BAH EZ8l?

JOHN HENNESSY: No, | actually think they're not necessarily more
complicated. They have a narrower range of applicability. But they're
not more complicated in the sense that they are a better match for what
the application is. And the key thing to understand about risk, the key

insight was we weren't targeting people writing assembly language
anymore. That was the old way of doing things, right? In the 1980s, the
move was on. Unix was the first operating system ever written in a high
level language, the first ever. The move was on from assembly
language to high level languages. And what you needed to target was
the compiler output. So it's the same thing here. You're targeting the
output of a domain-specific language that works well for a range of
domains. And you design the architecture to match that environment.
Make it as simple as possible, but no simpler.

OfL|R, Abd 50| BtEA =HSHA|= it detch O52 &
xH

B}el7t O SSLIC 2Lt OfE2|AH 00| FARUX H F EX[eCh= FoM
ds2 H S| BEUCh /o tHol 2otoF g oy Atet2 O Ol
ofdl=2l 2ol HgAE FEZ ot Z}CHe AYLICE A A €2 o=
YA O|RAX|, AEX[? 1980 HL{O| Of FHYO| AHEASHEL FHLAE
NEeR &2 &2 0=z Age 2= 2MMASLILE of XY
Ofdl=2l AUOOMEE Ag AONA| TAJASLCL 22|20 F4lo] 2=
AE A2 Horgy %EJ.OIE’JQ'—IG Jde2fM O 7IME BREZEX[RIL B =02
BN 2 ASots =g Qoo ZutEs EBHAE Lol 221 1
g0 &= OF7|HMNE EACHAIR. 7tsotE thedhA TEHAL. gLt
O ZHESHA= DAl

AUDIENCE: With the domain-specific architectures, do you have
examples of what might be the most promising areas for future domain-
specific architectures?

ED1|°._| 2 Ot7|8Xe| B2 &= =0 & Oot7|HXoA 7t 7Tt SHO|
ARAKXIOf Ciet o7t s

JOHN HENNESSY: So | think the most obvious one are things related
to machine learning. | mean, they're computationally extremely
intensive, both training as well as inference. So that's one big field.
Virtual reality. Virtual reality and augmented reality environments. If we
really want to construct a high-quality environment that's augmented
reality, we're going to need enormous amounts of computational power.
But again, it's well-structured kinds of computations that could match
to those kinds of applications. We're not going to do everything with
domain-specific architectures. They're going to give us a lift on some
of the more computationally-intensive problems. We're still going to
have to advance and think about how to push forward general purpose,
because the general purpose machines are going to drive these
domain-specific machines. The domain-specific machine will not do
everything for us. So we're going to have to figure out ways to go

forward on that front as well.

b =t A2 7[A stear SEE AYUo W 22, A52 AdNeR
e HESHeld, 23 otLzt =2 YLICh d2fA OAA2 sttel ket
ZOFYLICE 7hy o4, 7ty S 8l 3¢ e &3 dds SHAPI=
IFEO gEds UsaXt oohEH HFH &l At SHO| EagfL . d2u
CEAl oF ®, Ol2{st S/l 88 Z2a™1 X & = U= H 7=l Albt
YL Mol E o7|EME RE AS S| e A52
2 AY S 2 S0 sl (oA 2as 7tE AYLICh 8E
ARE7F ol2fst =M &Y HREHE 75 & AO7| HE0 #HE SHS
FTUSHE Y/ES AL ZTAZ|2 A8 ortLLh =0l £ Al2-2
2 & fl6l 2 AS S| HSLLE daiM 2= ¥22 Lot 23
ZtoroF g AYLICE

AUDIENCE: Professor, what do we think about some emerging
memory technology? How will it impact the future computer
architecture? Thank you.

usd, He2E HE22 7|0 M ofEA eyt nl2jel HRH

O7[EX0f oftH Fets DIEU7? DySUCH

JOHN HENNESSY: Yeah, that's a really great question. So as we get
to the end of DRAMSs, | think some of the more innovative memory
technologies are beginning to appear. So-called phase change
technologies, which have the advantage that they can probably scale
better than DRAM and probably even better than Flash technologies.
They have the advantage that lifetimes are better, too, than Flash. The
problem with Flash is it wears out. Some of these phase change
memories or memristor technologies have the ability to scale longer.
And what you'll get is probably not a replacement for DRAM. You'll
probably get a replacement for Flash and a replacement for disks. And
| think that technology is coming very fast. And it'll change the way we
think about memory hierarchies and 1/O hierarchy, because you'll have
a device that's not quite as fast as DRAM, but a lot faster than the other
alternatives. And that will change the way we want to build machines.

agf, 82 2 ZE0I4. 22 227t DRAM & EU LIE F § HiHQl
HE22] 7|E0| SYOH7| AIAUCD S CH 29 & 8=t 72, ofo

DRAM ELCt &g 7hsdtn ZejAl 7220 Fo{d = ACte O[FO| AUSLICE
d=2 SAEL 80| § FaUth 350 AsLILh 2A XM= XX
UAGLICL Ol2iet & Hst HE2| £ H 2[AFH 7| & €R= O 2 AT
g g = ASLCh d2|2 ofot: 42 DRAM 2 O & = U= A

Ol LICt S2fAl CHMEa C[A3 WM FO0| LELCE d2[1 M= 7|=0] o<

WA LEotn At dzguch 22(1 g2 ASH /0 AT 720
Ciet dztS BHAl 2 AYLICE fLfstE Y42 DRAM THE #EX|TH CHE
CHOtECH & WhE YX|E «7] MEYLICE J2|2 ad2 27t 7IAE
U= o2 LHS BHE AYUCH

AUDIENCE: As a person, you think about education quite often. We all
saw Zuckerberg having a conversation with Congress. And I'm excited
to see children getting general education around computing and coding,
which is something that a lot of us didn't have the opportunity to have.
Where do you see education, not only for K-12, grad, post-grad, et
cetera, but also existing people in policy-making decisions, et cetera?

|—E|‘O§A‘| CHAL Ct 2 B5 =7 27t
ol Bl Ol FClof 2Hsh MuEA Q|
=0| 7H2 7|27t iA&LICt

LS —
= 20 ofLet M 2 FoM 7|E MFEE0
(o)}
AN

JOHN HENNESSY: Yeah. Well, | think first of all, education has
become a lifelong endeavor. Nobody has one job for a lifetime anymore.
They change what they're doing and education becomes constant. |
mean, you think about the stuff you learned as an undergrad and you
think how much technology has already changed, right? So we have to
do more there. | think we also have to make more-- society needs to
be more technology-savvy. Computing is changing every single part of
the world we live in. To not have some understanding into that
technology, | think, limits your ability to lead an organization, to make
important decisions. So we're going to have to educate our young
people at the beginning. And we're going to have to make an
investment in education so that as people's careers change over their
lifetime, they can go back and engage in education. Not necessarily
going back to college, it's going to have to be online in some way. But
it's going to have to be engaging. It's going to have to be something
that really works well for people.

=0
o -
0]

-

e
40
L

M, Me uU|0] 42| 30| X|of 2Lt

= O
‘EJQ'—IEf ds2 130 ot= g5 HPH IL‘%

rot
d
-
1A
1%
™ o
d
>
&
(o]
~

&

po

N

o

-

aml

o

4o

|.|-|

o

b

oz
ot
=
2 A
-
o

o
I
s
rlo
N
L
o
o
=}
E:_
+
3@
r|r

(o]

2 nr o onpe e
i)
rlo
P
mjo
[e]3

Ir K

s 32
rir
=
)
10
Ho
rnn o
4
o
o

mo JH
om
|0
Hu
o
+
kI O
$0
II|>
E
o
N
>
=2
=
el

oBD Faw 2HE UL + At 520

=
rot
il
-
inl
]
i)
x
Ho
o
rir
>t
0jo
2
rir
mA
rlo
_>':
o
mn
mjo
El
Ho
els
o
et

A

e

L|Ct.

L
°
I~
1

oaeiA AEEel Aol B

2 o ASLIC & e 7hX| g, o
F2fLCh 22{Lt DS XO[0{0F gLt MESS Il
FR77 =[0{0F g AYLCE

AUDIENCE: Hi. Olly [INAUDIBLE] from BBC. Just wondered what your
view is on the amount of energy being used on Bitcoin mining and other
cryptocurrencies and that sort of thing.

o+, BBC 2| Olly [INAUDIBLE]. Bitcoin Ot0|'d 3! 7|E} S REIRA
(cryptocurrencies)2t 18 FFC[€0 ArEEl= O|HX[2] oi| CHSE Fote]
A7t sz

JOHN HENNESSY: Yeah. So | could build a special purpose
architecture to mine Bitcoins. That's another obvious example of a
domain-specific architecture for sure. So I'm a long-term believer in
cryptocurrency as an important part of our space. And what we're going
to have to do is figure out how to make it work, how to make it work
efficiently, how to make it work seamlessly, how to make it work
inexpensively. | think those are all problems that can be conquered.
And | think you'll see a bunch of people that have both the algorithmic
heft and the ability to rethink how we do that, and really make
cryptocurrencies go quite quick. And then we can also build machines
which accelerate that even further, so that we can make--a
cryptocurrency transaction should be faster than a cash transaction
and certainly no slower than a credit card transaction. We're not there
yet. But we can get there. We can get there with enough work. And |
think that's where we ought to be moving to.

H. J2hM LHe HIE 39 BAS 98 S SHo| OpF|YHE TEY 4
| A

UAASHE 0|0 =0l & OF7|HX ol =taot o /LT J2iM XM 22
s 2% RE22M &2 =0 oot F7|HQl XLt 22|72t sfot
g 22 JA0| ofZA HSoHA SteXl, OEA 28Xz NSt dt=A4,
Ao A4St UEE S, 221 20| ¢t WA HSSHA BEEs
YR-YLICE Ls O 2= A0 35 2 = Us M2t gt a2|a
Lie gn2[Fe S2d1 s8s M1 & & A= AHFES0| Bl ACts AS
g E AYLLE 22|02 AEE S=E otF WEA S0 & AYLIC
a2l fEl= Ol HF 7t&st AIAM 22[7F Tt = A= 7[HE s =
UAgLICL = of5 EUME2 olg AHej=L}) WED M8 Ft= A 20t
LolX| UL 22l oA A7(0f 8ok 2Lt 2= AZ|o 2 5
JAgLCh 2Ele S H22 70 2 &+ AL d2(40|
2|7t S200F 3t= k0|2t dZpgtL|Ct

AUDIENCE: What do you think the future operating system has to have
to cope with this?

ojgiel 293 MA7F of X0 ofEA CHABHOF ST WZyohd Li7t?

JOHN HENNESSY: Yeah. The future of operating system, you said,
yes? Yeah. So | think operating systems are really crucial. You know,
way back when in the 1980s, we thought we were going to solve all our
operating system problems by going to kernel-based operating
systems. And the kernel would be this really small little thing that just
did the core functions of protection and memory management. And
then, everything else around it would be protected, basically. And what
happened was kernel started out really small and then they got bigger
and then they got bigger and then they got bigger. And all of a sudden,
almost the entire operating system was in the kernel, primarily to make
it performance-efficient. And the same thing happen with hypervisors.
They started really small in the very beginning and then they got bigger.
We're going to have to figure out how we structure complex operating
systems so that they can deal with the protection issues, they can deal
with efficiency issues, they can work well. We should be building
operating systems which, from the beginning, realize that they're going
to run on large numbers of processors, and organize them in such a
way that they can do that efficiently. Because that's the future, we're
going to have to rely on that.

H. 23 X1|I1|°| ofey, o] “*5”Ef He . 224 2 M7t S22

Q0] Y2 B AR CHg AMCEH ARC AR D

ch. d23 ZAP), 7ol BE SYHTT HEol AU
2 ASHELICE 50/Tf BHOIX{O|AE OFRI7HR|LICt,
x D O CHBOE O ARSULL ST 29

PN
x|

A 780 2= 2HE M2l = A=K, 28d 2ME M2 &
I

HHE ofE =
4 QX MOHE ESSHex| Mets|of BLITH 2a|s HSRE B 4o
Z2 MM AED ﬂﬂ g 4 Qs Hw_i I 4

AL 2% HHE FHHO
o|ZsHor & ALt

AUDIENCE: In your intro video, you mentioned this chasm between
concept and practice. And also in your talk, you've mentioned that
hardware is vital to the future of computing. Given that most investors
are very hardware-averse, especially this day and age, where do you
expect that money to come from? |Is that something that will come from
governments or private investing? How are we going to fund the future
of computing is really what my question is.

271 HIE|0AM gt 28 AMo|e] 52 AeR;ELICH £t o =E2
O[OF7|0f| M StEfol= ATl Oj2fof BH0|2tn AGHSLILh tFE2
FAAE0| o= e, 55| =gl €2 4%, 0| oroM 2=
Aoz Oty AAd2 L B BEXoAM s AYLI? 22
OfEA AREL Do tigt 7Iss ofE & AQA7M7 dX=z L ZEE YL

JOHN HENNESSY: Yeah, it's a good question. | mean, | think the
answer is both. You know, certainly Google's making large investments
in a lot of these technologies from quantum to other things. | think
government remains a player. So government, you look at how many
of the innovations we're used to. The internet, risk, the rise of VLSI,
modern computer-aided design tools. All had funding basically coming
from the government at some point. So | think the government should
still remain a player in thinking about--what's the one area the
government has probably funded longer than anybody else? Atrtificial
intelligence. They funded it for 50 years before we really saw the
breakthrough that came. Right? So they're big believers. They should
be funding things long-term. They should fund things that are out over
the horizon that we don't yet really understand what their practical
implications may be. So | think we're going to have to have that and
we're going to have to have industry playing a big role. And we're going
to have to make universities work well with industry, because they
complement one another, right? They do two different kinds of things
but they're complementary. And if we can get them to work well, then
we can have the best of both worlds.

a2, 2 EE0|0k | CHEE2 = Cf Mg ot YohA|LD], 23] Google 2

LX 7|0 MEE CHE 7|20 O] 7|=0 2 £X

MEJF 0S| Mp2tn MZSICH OdgjiA HE, 22|

AMO| AR=X] FLICE QAEHE, ™, VIS o 24, dACEQl HFH X[HA

7 BEE 2EHOE O ANOM BRRRE ot X2 KD

[AJASLICE JefiM R O M M2 F74X QU0{0F oiCtn
2t} st

FEHLICH HEJ} OfOtE THE of LtatwCh o Q3 £X} ¢ HEO)

—

= =
St AEHE. Lie

X|27HR ot ge

ST

2|
ALne? s Xs. A52 RV Mz €2 oS dAM=z E7| Hof

50 A7t AgE& AEMESHE. #E? A 252 2 AXYHE. d52
Y71Hez XAgs ZEHOF gLt 52 XEY HHo A= ASS
g2z ZOtopettt 2els 2MH=z2 152 2FHe oi7F FALIX|
OfsiatA| Zotrt. J2iA 2= A sioF Stotn WZpetL|Ch YA oM 2
At SoF LT RE2lE S0l Mz 2257 HEo| AL &
ofg2l= tists TS0of YU gLt 152 F 71X S/ €5
SHA|ZH 22N ULt 227t &2 ASoteE s = AL, 22l= F AAC
g8s 257 78 =+ AgUh

AUDIENCE: You talked a little bit about the difference between the
memory hierarchy and storage that is coming up with these new
memory technologies. Have you seen any applications where the
compute and the storage get combined, kind of more like the brain?

Of Mz22 ME2| 7|&0| s HZ2 AT F= AE2[X[2 XtO|Fof CHok
Zg Olop7|}EHt. ARBa 2E2X[7t ZgtE 88 Z2Ods B/

O Silob HlZELic

JOHN HENNESSY: Yeah, | think increasingly we'll see things move
towards that direction where the software takes care of the difference
between what is in storage and-- "storage," quote unquote, right,
because it may actually be Flash or some kind of next generation
memory technology-- and what's in DRAM. What you need to tell me is
what's volatile and when do | have to ensure that a particular operation
is committed to nonvolatile storage. But if you know that, we've got log
base file systems, you've got other ideas which move in the direction
of trying to take advantage of a much greatly different memory
hierarchy, greatly different storage hierarchy than we're used to. And
we may want to continue to move in that direction, particularly when
you begin to think about--if you think about things like networking or I/O
and they become major bottlenecks in applications, which they often
do, then rethinking how we could do those efficiently and optimize the
hardware, but also the software. Because the minute you stick an
operating system transaction in there, you've added a lot of weight to
what it costs to get to that storage facility. So if we can make that work
better and make it more transparent without giving up protection,
without giving up a guarantee that once something is written to a certain
storage unit it's permanently recorded, then | think we can make much
faster systems.

of, 2ZERI07 M FX[of AU

= A M KX e XAO|E ME|ot=
HISFO 2 0|E3le HS MA O 2 A

§ZFSHL|CF, "A &b REK|" =
o

o — o
MZEZ KA OAL 2X=Z S2A E= OE FFE & ASLICH MO

HZel 7|s - JE[3 DRAM O £310] =7t FAO0] ZaloF & A2
HEgol 2N §F HYo| H LY MY X EAM A=K =2elsfor &
MYLICE Lt 23 7|8 o A|A-0] Atks AS & =H 2N OE
22l AS =, oo AFESHE Aits 3A BE MEx AT 28
g8otdfs Loz Lok OfE OoIL|oE 2 EUCh 53] HEHZ
CHet dZO[Lt 1/0 Of CHol dzotd S8 Z=IZN F8 85 dds
2ov|n FF 7t g + As L5 446 BE o{FA dHst=Lof et
AL Lotz = JAFLICE 0F 28Nz A5t StEQOE X Heta #
OtL|2} 2ZELO e XHSYAIR. 23 MA E;MYMES ArEsts =7 H
Y M Ko =0{7t= O E= HEO B2 == SLICL M2t 227t
E3 FXE Z7I5HK @1 o U2 HYs st RS TS + UACHH
of M X0 7|& & WO AFHe=z 7|EEH EFS Z7|5HK 2
Y WE ALES TS o ATt Yo

AUDIENCE: So do you see the implementation of a domain-specific
architecture being implemented as hetero type or do you see it off-die,
off-chip type implementations, or both?

OO =0el £ ob7["Xe| #3H0| HHZ Rz
BAREUI? OfLH @I CO| (off-die), 2Z & 7 7o E= & O
2Lt

JOHN HENNESSY: | think both. | mean, | think it's a time of great
change. The rise of FPGAs, for example, gives you the opportunity to
implement these machines, try them out. Implement them in FPGA
before you're committed to design a custom silicon chip. Put it in an
FPGA. Unleash it on the world. Try it out, see how it works, see how
the applications map to it. And then, perhaps, decide whether or not
you want to freeze the architecture. Or you may just want to build
another next generation FPGA. So | think we'll see lots of different
implementation approaches. The one thing we have to do--you know,
there was a big breakthrough in how hard it was to design chips that
occurred from about the mid-'80s to about 1995 or 2000. Things have
kind of ground to a halt since then. We haven't had another big--we
need a big breakthrough because we're going to need many more
people designing processors targeting particular application domains.
And that's going to mean we need to make it much easier and much
cheaper to design a processor.

L= = of dZ4SCh L= O|A0| & Bzt A7|2td dZoltt o8 =

FPGA 2| 822 0| 7|AE Tt Al = 7|=|7t ddL|Ch. 74*5*
22| HE 2A57] Tol FPGA 2 FolotdA|2. A4S FPGA O F24A2.

a4S MA SHetEAlL. OAdS Algdd) 23, O{EH &HF5t=X 21, 88
ZE2IE0| 20 oEA ofEE =X E*'*IE 8 oS OF|HAE

YR R E ZEYUCLL EE KM FPGA E #5510 HE &

UG LICH J2HA 2= CHet 7o Y-S 27 2 Ao2tn dZpetL|rt
2|7k ofof & ot JtX|= - FL4l0| Oot= HZE, 80 HO SHOIA 1995 A
EEE 2000 E AtO[0] St S EASE A0l LOrLt ofH{2X|of Chgt
2715l snt+7F ARASUCE 1 ojz2= 2F FX|7t 9191%'4'1
FEofAE £ CHE 2 5380 st 5§38 88 =213 =02

f&22 ot= Z2NME *3*71|3E AMES0| § East| Mo 2 He”‘.iol
2Ly ol Z2MME EActs A0 N g NMEJHE 27t UASS
o|ojgfL|Ct.

AUDIENCE: I'm wondering, as a deep learning engineer for a private
enterprise, what is my role in pushing forward DSA?

Qot HEXQ stg AXLOZM DSAE FTSH=H AN Lto

JOHN HENNESSY: Yeah. Well, | think your role is vital because we
need people who really understand the application space. And that's
really critical. And this is a change. | mean, if you think about how much
architects and computer designers, hardware designers have had to
think about the applications, they haven't had to think about them. All
of a sudden, they're going to have to develop a bunch of new friends
that they can interact with and talk to and colleagues they can work
with, to really get the insights they need in order to push forward the
technology. And that's going to be a big change for us, but | think it's
something that's absolutely crucial. And it's great for the industry too,
because all of a sudden we get people who are application experts
beginning to talk people who are software domain experts or talk to
hardware people. That's a terrific thing.

H. &, M= 8 Z21™ Ss 2HMZE Of3ists AFFS0| ERst7| W20
ol2{o| geto] Zaotttn dzglct J2|1 aA2 L2 et
J2|1 OfA2 HotYLICh A 2, LOtLt B2 A=7tet HAFE CIX0IH 7t
SFEROf CIXtOILAZE O Z2[AH| O] 0f| Tl H2sl HOFOF St=X| 2ok
=CHE, A0 ol d2te 2ert gitts AYLICH 24XV 152 o=
A85tL gt & £ A= MER HFS5S ME &= A =D, SE
O[OF7|E LIHAM Zles ZHAZIZ| ?lof 2ast SEHS 2 ZASLIC
d2|1 aA2 R0 A= AHeret gebr 2 AYLo 2Lt XM= 0|0
2iHez Faeh Ao2td dztetLch d2|n ZA7| 22l 88 =7 ¢

AIES0] 2ZEQO =0Q ME7H0|A Lt St= O AFEXLRL i=totY|
| =0 HEANME FESLICE IA2 CHEeh AL

AUDIENCE: You mentioned the performance enhancements of
domain-specific languages over Python, for instance, but they're also
much harder to use. So do you think software engineering talent can
keep up in the future?

o€ =0f Python Off H|5H =02l S8 20

= Pl o 450| LAt AG K| B
ARESHZ|7E A of{ R ELCh D™ECHE 2T EQI0f AX|ILIOE QXY
%o

—

AN H

2k AL 7R + ALt EA5HLI

JOHN HENNESSY: Yeah. | think the challenge will be--the gain we've
gotten in software productivity in the last 20 or 30 years is absolutely
stunning. It is absolutely stunning. | mean, a programmer now can
probably write 10 to 100 times more code than they could 30 years ago,
in terms of functionality. That's phenomenal. We cannot give that up
because that's what's created all these incredible applications we have.
What we need to do is figure out--all of a sudden, we need a new
generation of compiler people to think about how do we make those
run efficiently. And by the way, if the gap is a factor of 25 between C
and Python, for example, if you get only half that, that's a factor of 12
times faster. Any compiler writer that can produce code that runs 12
times faster is a hero in my book. So we have to just think about new
ways to approach the problem. And the opportunity is tremendous.

>~
==
N
-
ot
-

4. L= =XOo| & Aolztn L|C}. XL 20~30 d 59 AT EQ|0

L)

0
HI
MU
u

drrgoA 2 052 ZEH2 2 AYUCL A2 BUHez
SAHYYCL &, Zz=202H= OofX 7|sBOoIM 30 MELH 10~100 B G
B2 ZES HdE + AU AA2 =S AA0 f2[7F 7t 0
=2 88 Z2I™MS 2F USAY M2 f2= Ads Z7(g =
RELICE 22|71 sfioF & 22 FAAKX| LOotL= AYLICE LA f2l=
Olz2 2882z 2J%ots LHo ool dzdt=s M=Z2 Mol Huta7t
ZaetL(th, O3 2Hef C2F Python AtO[2] ZHZAO] 25 FEEtH, o€ S0 1
2 Y= 128 WELICHL 128 #EA d¥Hs IEE 44 E & Us
Autge A= Mo IYLILE mEtd f2= XM E2ots M22
Ao CHoHA EZsHoF ST 7|2ls HEE Lt

AUDIENCE: Are there any opportunities still left in x86 as far as, like,
lifting the complexity of the ISA into software and exposing more
microarchitecture to the compiler?

x86 0| BEEMES AZEY |1 o %2 00|22 o7 [HNE

17k &

B 2
HU
]
<
for Mo
m

32
Aot ==A7l= A

o>

L|77t?

JOHN HENNESSY: It's tough. | mean, | think the Intel people have
spent more time implementing x86s than anybody's ever spent
implementing one ISA, one instruction set ever. They've mined out
almost all the performance. And in fact, if you look at the tweaks that
occur, for example, they do aggressive prefetching in the i7. But you
look at what happens with prefetching, some programs actually slow
down. Now on balance, they get a little bit of speed up from it, but they
actually slow down other programs. And the problem right now is it's
very hard to turn that dial in such a way that we don't get overwhelmed
with negative things. And | see my producer telling me it's the end of
the session. Thank you for the great questions and for your attention.

22012, U T2, A=Z AIES0| x86 2 Teidotes Ol H H2 AlTS
JA— A o = |-

OS2 Ao 2E duE MEdsHn 2Nz
of

M H=HQ =2 HX|E sdgLch 2L =g

>t 0z &
Of
rr

4 N Hr px |H E pe
>
HU

(prefetching)2 O 20| LOjLt=X| 4HEHM HH=ZE =2{X|=
EOME JASULCH OlFe 2EE2

d2 0|77 ME0| H=7F ofzh Eabx| x| 2t

= G2 Z2O#o| £:7F S 22|10 ZXE HZ Xg 2?27t
5o AS2 Y& Yol HES CHojgs =27|7t 0 OECLh=s
LCE d2[2 M= Z2FAZF Hde 20[2tn ERESLICH
Chet 221 2ol HAIEELCH

